6.2 Principal Component Analysis
Principal component analysis (PCA) is a common method for exploring multivariate data. Note the use of zeroreplace()
- this is because the princomp()
method defined for th acomp
class uses a centred-log-ratio (clr()
) transformation that is intolerant to zero-values.
CD166_19_xrf_acomp %>%
zeroreplace() %>%
princomp() %>%
biplot(xlabs = rep(".",times = nrow(CD166_19_xrf_acomp)))
It is useful to plot components over depth. They can be extracted and plotted as follows:
bind_rows(
tibble(depth = CD166_19_xrf %>%
filter(qc == FALSE) %>%
pull("depth"),
Comp.1 = NA
),
tibble(
depth = CD166_19_xrf %>%
filter(qc == TRUE) %>%
pull("depth"),
Comp.1 = CD166_19_xrf_acomp %>%
zeroreplace() %>%
princomp() %>%
magrittr::extract2("scores") %>%
as_tibble() %>%
pull("Comp.1")
)) %>%
arrange(depth) %>%
ggplot(aes(x = depth, y = Comp.1)) +
geom_line() +
scale_x_reverse(name = "depth [mm]")
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_line()`).